The von Mises Naive Bayes Classifier for Angular Data
نویسندگان
چکیده
Directional and angular information are to be found in almost every field of science. Directional statistics provides the theoretical background and the techniques for processing such data, which cannot be properly managed by classical statistics. The von Mises distribution is the best known angular distribution. We extend the naive Bayes classifier to the case where directional predictive variables are modeled using von Mises distributions. We find the decision surfaces induced by the classifiers and illustrate their behavior with artificial examples. Two applications to real data are included to show the potential uses of these models. Comparisons with classical techniques yield promising results.
منابع مشابه
THEORETICAL ADVANCES Directional naive Bayes classifiers
Directional data are ubiquitous in science. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. We extend the naive Bayes classifier to the case where the conditional prob...
متن کاملA New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملDiscriminative directional classifiers
In different areas of knowledge, phenomena are represented by directional-angular or periodic-data; from wind direction and geographical coordinates to time references like days of the week or months of the calendar. These values are usually represented in a linear scale, and restricted to a given range (e.g. 1⁄20;2πÞ), hiding the real nature of this information. Therefore, dealing with directi...
متن کاملA Variational Bayes Approach to Decoding in a Phase-Uncertain Digital Receiver
This paper presents a Bayesian approach to symbol and phase inference in a phase-unsynchronized digital receiver. It primarily extends [10] to the multi-symbol case, using the variational Bayes (VB) approximation to deal with the combinatorial complexity of the phase inference in this case. The work provides a fully Bayesian extension of the EM-based framework underlying current turbo-synchroni...
متن کاملDiagnosis of Pulmonary Tuberculosis Using Artificial Intelligence (Naive Bayes Algorithm)
Background and Aim: Despite the implementation of effective preventive and therapeutic programs, no significant success has been achieved in the reduction of tuberculosis. One of the reasons is the delay in diagnosis. Therefore, the creation of a diagnostic aid system can help to diagnose early Tuberculosis. The purpose of this research was to evaluate the role of the Naive Bayes algorithm as a...
متن کامل